
Parallel Application Performance Comparison with Vulkan, CUDA and OpenMP

SeongHu Hong* and DoHyeong Kim*, Chang-Sung Jeong

Department of Computer Engineering, Korea University

Anam-dong 5-ga, Seongbuk-gu 136-713, South of Korea

E-mail: valvenis@korea.ac.kr, 2015010681@korea.ac.kr, csjeong@korea.ac.kr

* These two authors contributed equally to this work.

Abstract: Vulkan is an API (Application Programming

Interface) for graphics and compute hardware, launched by

Khronos. For Programming model, it recently draws

attention as a Graphic and Compute Integrated API, and

much works have been conducted focused on Vulkan's

Graphic API performance, but not so much works on

Vulkan’s Compute API. Therefore, in this paper, we shall

evaluate and compare the performance of Vulkan’s

Compute API with respect to CUDA and OpenMP by

implementing three parallel applications using them

respectively. Also, we shall show that the performance of

Vulkan is similar to that of CUDA, and has advantage of

using graphic and compute operations at the same time.

Keywords—OpenMP, CUDA, Vulkan, GPGPU, Parallel

Application

1. Introduction

GPU has a dissimilar design concept of CPU[1]. A couple

of CPUs can sequentially perform diverse tasks. On the

contrary, GPU has many-core, a GPU’s single core has

worse performance than a CPU core, and has carried out

graphic rendering computation. Because many-core can

manage many independent data, kind of pixel, but CPU’s

sequential operation takes a long time compared with GPU.

GPU is optimized for single instruction multiple data

(SIMD). So if each operation has operating on independent

data, the application can be effectively parallelized on GPU

than CPU. Lately, due to this feature of many-core and

parallel operation, GPU is taking advantage of various field.

 Usage of GPUs for different operation such as general

signal processing, physical simulation, financial forecasts,

biological calculation means GPGPU (General Purpose

Graphics Processing Unit)[2][3]. By utilizing GPGPUs, we

can reduce time of massive data processing or plenty of

mathematical calculations. However, when we directly

handle GPUs to use different purpose, it is difficult to

control GPU memory and make program without detail

GPUs System information and graphic engine. So, until the

compute unified framework introduced, such as CUDA [4],

OpenCL and OpenACC, there were many restrictions to use.

In addition, Programmers were not easy to use for GPGPU.

Therefore, programming models are developed, which

support GPGPU such as CUDA, OpenACC, Vulkan API

and so on, in order to use GPU as general purpose.

Moreover, from GPGPU support high-level language, it

makes it easier to use.

 Khronos launched the Vulkan specification on 2016, and

Khronos members released Vulkan drivers and SDKs also.

It can be used not only for Graphic rendering but also used

as GPGPU like OpenCL, CUDA that has features of

Compute API. However, it still does not have a sufficient

reference and performance analysis as GPGPU either. Most

of the works about Vulkan focused on Graphic rendering.

In this paper, we shall evaluate and compare the

performance of Vulkan’s Compute API with respect to

CUDA and OpenMP by implementing three parallel

applications using them respectively. We use OpenMP and

CPU programming model tocreate and perform thread

while CUDA and Vulkan API to compare each

performance of GPGPU model using three parallel

applications. Also, we shall show that the performance of

Vulkan is similar to that of CUDA, and has advantage using

graphic and compute operations at the same time.

This paper is organized as follows. In Section 2, we give

some information of Programming model which be used

experiment. Section 3 explains parallel applications. The

fourth section shows results in comparison of OpenMP,

CUDA and Vulkan API with above three applications.

2. Programming Languages

In this work, three parallel applications are evaluated by

OpenMP, CUDA and Vulkan API to compare with CPU

thread model and GPGPU model. OpenMP is CPU thread

model, CUDA and Vulkan API are GPGPU model.

2. 1 OpenMP

OpenMP(Open Multi-Processing) is an API that provide

shared memory multiprocessing programming in C, C++,

and Fortran(77, 09, 95)[5]. It is effective at loop-level

parallism, which is set of compiler directives, libarry

rotines, and evironment variables. It effectively enable

parallel processing at loop-level prallelism in applications

by simple directives. OpenMP uses the fork-join model. In

other words, when OpenMP program start, a master thread

operate sequentially untill the openmp directive. The master

thread create parallel threads which is slave threads if the

master thread meet the directive.

One of the several OpenMP’s advanges can reduce

modification of code by using directive. Onother advantage

is able to communicate each thread easily, because threads

have shared memory architecture. However, if the number

of thread is more then CPUs, program performance is fallen.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

237

2. 2 CUDA

CUDA (Compute Unified Device Architecture) is a model

of parallel programming by using graphics processing unit

(GPU), which is developed by NVIDA to increase GPUs’

flexibility [6]. In the past, people took advantage of GPUs

for graphic processing, not general purpose. The goal of

CUDA is supported integrated development environment

(IDE) of GPGPU by GPUs.

 CUDA is simple to use. Host allocates GPUs’ memory and

then send data in the host to the GPUs. GPUs operate

calculation with received data and then results send back to

the host. GPUs have a shared memory architecture, which

available fast communicatoin with each threads. We use

shared memory to optimize program.

 Figure 1 shows CUDA Thread Batching model. Data

parallel parts of an application are executed on the CUDA

Device as kernels which run in parallel on many threads. A

Kernel is executed as a grid of blocks. Blocks are consist of

threads.

Figure 1. CUDA Thread Batching Model

2. 3 Vulkan API

Vulkan API is a graphics and compute API published by

Khronos on February 16, 2016[7]. It is an advanced API

from OpenGL that operates 3D graphic rendering and has

computing operation like GPGPU. Goals of using Vulkan

API are greatly reducing CPU overhead and driver load,

and provide cross platform to utilize mobile machine or

personal computer.

We are interested in Vulkan API’s computing operation.

Experiment is done except for graphic rendering in order to

found capacity of computing operation as GPGPU.

Basically, Vulkan Compute API for GPGPU is shader

based. Each terminology is different with CUDA, but the

parallel programming model in Vulkan shows similar with

programming model in CUDA. Table 1 shows the general

terminology of Vulkan and CUDA. In addition, Figure 2

shows Work Group model of Vulkan. It has similar

structure with CUDA. Programmer implements the part of

matching Kernel on CUDA on shader code and can execute

the shader code through call cmdDispatch function.

Table 1. Vulkan & CUDA General Terminology

Vulkan CUDA

Work Item(Invocation) Thread

Work Group Thread Block

Global Work Group GRID

Figure 2. Vulkan Work Groups

3. Applications

We evaluate the performance of three applications on CPU

and GPGPUs models.

3.1 Monte Carlo Method

Monte Carlo Method is a class of computational algorithm.

It uses repeated random sampling to define constraints on

the value and then makes a sort of “best guess”. They are

often used when simulating physical and mathematical

problems.

In this work, we used Monte Carlo Method to calculate the

value for π . If there is a circle and a square where the

length of a side of the square was the same as the diameter

of the circle, the ratio of the area of the circle to the area of

the square would be π/4. Then the value of π can be

approximated using a Monte Carlo method[8].

3.2 Particle Operation

Particle systems are used for a lot of graphic effects such

as smoke, explosions, smoke and spray[9]. Tens of

thousands of particles are needed to quickly calculate

positions to be shown effects at every frame. Therefore, it is

suitable for use of GPGPU that is available many threads

and operate many computations at the same time.

3.3 N-Queens Problem

N-Queens problem is that a set of n queens are laid on the

chessboard, when each of n queens avoid lines that one

queen can attack the other. The queen can attack horse on

horizontal line, vertical line and diagonal line. It is possible

to have numerous solutions. We found all number of cases

and solutions.

238

4. Methodology

 In this section, we describe methodology to check

performances. We implement each application based on the

identical code to compare performance of sequential and

parallel applications using OpenMP, CUDA and Vulkan.

Each application on OpenMP, CUDA and Vulkan platform

is optimized for each programming language and tested.

Each application is implemented sequentially or

recursively using C. Evaluation is performed after

optimization that most fits to each programming language.

Therefore, each parallel application has different features

according to the programming model on it is implemented.

Test is repeated 10 times, and average execution time

calculated from that. Execution time is just processing core

computing, but not for communication and idle time.

All Experiments are carried out on the following hardware

configuration.

Mother board Gigabyte Technology Co. Ltd. Z77-D3H

Processor Intel® Core™ i5-2500 CPU @ 3.30GHz

System Memory DDR3 12G

GPU NVIDIA GeForce GTX 750 Ti

OS Windows 10 pro

5. Experimental Result

In a PC belong GPUs, we evaluate three programming

model OpenMP, CUDA and Vulkan API with three parallel

applications. Figure 3 shows the results of time

measurement for three parallel applications. In uppermost

graph, orange color bar represents the time for searching all

number of cases non-recursively in the N-Queens problem,

while blue bar for finding solutions recursively. Vulkan

API uses shader program to operate on GPUs, and does not

support recursion. Therefore, we cannot experiment Vulkan

API for recursive N-Queens application. Unlike Non-

recursion application, GPGPU is slower than CPU for

recursive case, since N-Queens problem does not require

many cores. In addition, due to the task dependency

between recursive call, all the processes need to

synchronize for the next recursive call.

For Monte Carlo application with size of 256 x 256,

CUDA has slightly better performance than Vulkan API’s.

Particle operation has 8162 particles, and can be

parallelized easily, since each particle can be processed

independently. CUDA and Vulakn has much better

performance than OpenMP and C. GPGPU programming

models has the best performance for particle operation.

Figure 3. Time measurement of three parallel applications

using parallel programming model.

6. Conclusion

In this paper, we have measured the performance of

OpenMP, CUDA and Vulkan API on CPU and GPUl.

There is no big difference in performance between CUDA

and Vulkan API’s. However, CUDA is slightly better than

Vulkan API. For computational intensive processing such

as high-performance servers and clusters, CUDA has an

advantage over Vulkan. However, Vulkan API has many

advantages: Vulkan API is supported on every platform and

modern GPU. In addition, developer can use graphic API

and compute API at the same time when using Vulkan.

Also, Vulkan can execute Graphic rendering and compute

operations at the same time. As a future work, we are going

to carry out research on optimizing applications for

computation intensive image processing by using Vulkan

API.

239

References

[1] Ledur, Cleverson Lopes, Carlos MD Zeve, and Julio CS

dos Anjos. "Comparative analysis of OpenACC, OpenMP

and CUDA using sequential and parallel

algorithms." 11th Workshop on parallel and distributed

processing (WSPPD). 2013.

[2] Owens, John D., et al. "GPU computing." Proceedings

of the IEEE 96.5 (2008): 879-899.

[3] Owens, John D., et al. "A Survey of general‐purpose

computation on graphics hardware." Computer graphics

forum. Vol. 26. No. 1. Blackwell Publishing Ltd, 2007.

[4] Nickolls, John, et al. "Scalable parallel programming

with CUDA." Queue 6.2 (2008): 40-53.

[5] Chandra, Rohit. Parallel programming in OpenMP.

Morgan kaufmann, 2001.

[6] Lee, Seyong, Seung-Jai Min, and Rudolf Eigenmann.

"OpenMP to GPGPU: a compiler framework for

automatic translation and optimization." ACM Sigplan

Notices 44.4 (2009): 101-110.

[7] https://www.khronos.org/vulkan

[8] Kalos, Malvin H., and Paula A. Whitlock. Monte carlo

methods. John Wiley & Sons, 2008.

[9] Nguyen, Hubert. Gpu gems 3. Addison-Wesley

Professional, 2007.

240

