

David C. Wyld et al. (Eds) : CSITA, ISPR, ARIN, DMAP, CCSIT, AISC, SIPP, PDCTA, SOEN - 2017

pp. 207– 215, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70120

LARGE SCALE IMAGE PROCESSING IN

REAL-TIME ENVIRONMENTS WITH

KAFKA

Yoon-Ki Kim
1
 and Chang-Sung Jeong

2

1,2

Department of Electrical Engineering, Korea University, Seoul, South Korea
1vardin@korea.ac.kr
2csjeong@korea.ac.kr

ABSTRACT

Recently, real-time image data generated is increasing not only in resolution but also in

amount. This large-scale image originates from a large number of camera channels. There is a

way to use GPU for high-speed processing of images, but it cannot be done efficiently by using

single GPU for large-scale image processing. In this paper, we provide a new method for

constructing a distributed environment using open source called Apache Kafka for real-time

processing of large-scale images. This method provides an opportunity to gather related data

into single node for high-speed processing using GPGPU or Xeon-Phi processing.

KEYWORDS

Real Time Image Processing, Distributed Processing, Real-Time Processing, Apache Kafka

1. INTRODUCTION

Recently, the development of video equipment such as CCTV, satellite, and drone has increased

the volume of real-time image data. Large Scale of real-time image data coming from many

camera channels is difficult to process at high speeds with single resources such as CPU and

GPU. GPU has been developed for high-speed image processing, however it is not enough for

large-scale image processing because of the limit of memory shortage. There is also an approach

of HIPI [1] to large-scale image processing using the HDFS, but this is also inadequate for real-

time image processing due to the limitations of the batch processing. In addition, the HDFS [2]

uses a random access approach to the disk. It causes HDD I/O bottleneck. For this reason, HIPI is

insufficient to process the real-time data continuously.

In order to process a large-scale image occurring in real-time, it is necessary to have a processor

and memory capable of accommodating it. Large-scale image processing using multicore and

GPU in a single node cannot accommodate data due to insufficient memory. To compensate for

this, it is essential to distribute processing for large-scale images using cluster composed of

several nodes. There are two major issues in approaching this way. The first is the memory

acceptance issue at a single resource such as main memory and GPU. As the amount of data that

can be accommodated in a node increases and reaches the limit of the memory capacity, the

208 Computer Science & Information Technology (CS & IT)

processing speed is rapidly reduced [3]. Since the data processing speed is slower than the data

occurring speed, it is important not to lose the occurring data while the data is being processed.

Second issue is the communication overhead between divided tasks. When a large task is divided

into small tasks and distributed processing is performed, communication occurs between the

divided tasks. The more associations between divided tasks, the more communication will occur.

Communication overhead is caused by dividing data between each task into more than necessary

pieces [4]. This problem becomes more severe when the task is divided into highly correlated

tasks. For this reason, it is important to divide tasks appropriately in order to prevent a lot of

communication between divided tasks.

Apache Kafka provides features that are suitable for addressing the issues mentioned previously.

Kafka is distributed messaging system for log processing. Kafka uses Zookeeper [5] to organize

several distributed nodes for storing data in real time stably. It also stores data in several

messaging topics. It provides a messaging queue that allows nodes which needs a message to

access and process it.

In this paper, we propose a new method to process large scale image data in real-time using

Kafka. This method enables large-scale image data in real time to be processed quickly. In this

method, large-scale images can be processed in real time with a resilient scale-out of computing

resources.

The outline of our paper is as follows: In Section 2, we describe related works for introducing

Apache Kafka and some approaches to handling large-scale images in real time. Section 3, we

explain a new method to process large scale image data in real-time using Kafka. Section 4

explains implementation of proposed method and shows its experimental results. Lastly Section 5

summarizes the conclusion of our research.

2. RELATED WORKS

Apache Kafka [6] can be used to collect various types of data in real time. Kafka is an advanced

open source project, and its ability to handle high-volume streams such as Internet of things and

log data. It performs better than existing messaging system [7-9] with specialized architecture for

large-scale real-time log processing. It is suitable for both offline and online message usage. And

it is based on publish-subscribe model and consists of a producer, a consumer, and a broker.

Producer generates a message and publishes it to a specific topic. And the consumer takes it and

processes it. A broker is a server cluster that manages messages so that producers and consumers

can meet, and categorizes messages which received from producer. It can be configured as

multiple broker Clusters, and each node is monitored by Zookeeper.

There are several advantages to adopting Kafka in this paper. Firstly, since messages are stored in

the file system, the durability of the data is ensured without any special configuration. Kafka uses

sequential access to the HDD, resulting in faster performance than memory random access

methods. Performance comparison of HDD sequential access method and memory random access

is compared in [10]. In the existing messaging system, the performance of the system decreases

drastically as the number of messages left unprocessed increases. However, since Kafka stores

the message in the file system, the performance is not greatly reduced even if a large amount of

messages are accumulated. It can also be used to accumulate data for periodic batching as well as

real-time processing, since many messages can be stacked. Secondly, Kafka provides fault

Computer Science & Information Technology (CS & IT) 209

tolerance by storing messages in the file system and replicating them to the broker. Unlike an

existing messaging system that immediately deletes an acknowledged message from a consumer,

it does not delete the processed message but leaves it in the file system and deletes it after a set

lifetime. Since the processed message is not deleted for a certain period of time, the consumer can

rewind the message from the beginning if a problem occurs during processing of the message or

if the processing logic is changed. Thirdly, Kafka provides storage capacity for large-scale data

using pulling method. In traditional messaging systems, brokers push messages to consumers,

while Kafka acts as a pull consumer, taking messages directly from the broker. Therefore, a

consumer can get optimal performance by fetching only the messages of his processing capacity

from the broker. Push-based messaging system, the broker directly calculates which messages

each consumer should process, and tracks which messages are being processed. In Kafka, the

consumer pulls the necessary messages directly from the broker. By pulling messages from

broker, it is possible to build a batch consumer that stacks and periodically processes messages.

For these reasons, we decided to adopt Kafka in the process of handling large-scale image

processing on distributed environments.

3. METHODOLOGY

Real-time stream data is constantly generated so as not be accommodated in the memory

continuously. Parallel processing of such a large amount of stream data in a single node is limited

by the memory capacity limit. Also, communication overhead is caused by frequent data

transmission between the main processor and the coprocessor. Performing only distributed

processing on multiple nodes also causes communication overhead due to large-scale parameter

exchange between nodes in the cluster. In order to solve this problem, we present a new

architecture and several methods for large scale image processing using apache Kafka.

The model for real-time processing of large-scale images consists of three parts. The first is the

part that detects the frame from the stream channel. The stream channel may be a channel directly

connected to the camera or a remote channel transmitted through the RTSP protocol. This part is

responsible for producing messages and consists of several nodes. One node can sense data

coming from one or several channels. Depending on the resource capability of each node, it is

determined how many channels can be detected in one node. In the part detecting the channel, the

frame of the video is transmitted to the Kafka broker.

The second part is a Kafka broker. In this part, a large amount of stream data transmitted from the

previous part is stored in a buffered queue. Generally, the processing speed of the stream is

slower than generation rate. For this reason, in order to process a large amount of video data

without loss, it is necessary to temporarily store the detected stream data. We used Kafka for a

stream buffer. There are several reasons why we used Kafka to store large amounts of video in

temporary buffers. The reasons we adopted Kafka in buffering large image processing is as

follows.

• Since the video message is stored in the file system, the durability of the data is

guaranteed. This advantage allows data to be permanently stored in the buffer, even if

none of the nodes can process the video stream. The video stream is deleted from the file

system at the time set by the user. In addition, since the video stream generated in real

time has a large capacity, it can overcome the disadvantage that it is difficult to be loaded

in the main memory.

210 Computer Science & Information Technology (CS & IT)

• Instead of distributing messages to the distributed nodes in the master node, each node

ready to process takes a message from the buffer and processes it. In this condition, even

if the performance of each node is different, it is possible to perform high-speed

processing without bottleneck of stream data because the node ready for processing

processes the data.

The last part is that each node has an image processing application, which takes and processes

stream data from the Kafka broker. The image processing application at each node is intended to

perform the same operation. Since each node has one frame at a time, one frame can be seen as a

set of related data. In the text processing system, data is transmitted or processed in units of

tuples. In the proposed system, the image processing unit is regarded as a frame. It is a feature of

image processing that many repetitions of matrix or vector operations are included. It can be

processed quickly by using GPU accelerator considering frame as basic unit of processing. In this

part, we use the asynchronous method of processing data regardless of the order of image

generation.

We construct the model of this system with the three parts mentioned above, and this model is

expressed as the following figure 1.

Figure 1. The overall model of large scale image processing using Kafka

3.2 Strategies

To process large-scale images in real time, we present several strategies as follows.

(1) Since the same operation is performed at the application level, the resolution of the image

must be synchronized. When an image is distributed to multiple distributed resources, the

image is shuffled. Therefore, when images of different resolutions are transmitted to a

distributed environment, the application may require excessive workload, which may

degrade performance. For this reason, the size information of the image must be

transmitted to the application level in the part detecting the frame.

Computer Science & Information Technology (CS & IT) 211

(2) The unit transmitted at one time is the frame of the image. In general, one frame

transmitted from a camera channel has multiple channels. One frame is serialized into a

byte array for transmitting to the Kafka broker. When the byte array is transmitted from

the Kafka broker, the original image is obtained by re-encoding based on information

such as the resolution of the image and the number of channels.

(3) Transfer image data asynchronously to Kafka Broker. This is a strategy to increase image

processing speed in distributed resource environment composed of multiple nodes. This

results in faster image processing, while the order of the images can be shuffled. It can be

used for the purpose of identifying an object in a video generated in a large camera

channel and storing the value permanently by taking only the information of the

identified object.

(4) Take advantage of multiple distributed nodes to retrieve data from topics and parallelize

them. A frame from one channel can be sent to multiple topics to allow distributed nodes

to retrieve and process data from each topic. Alternatively, multiple nodes can access and

process data with the same topic. The larger the number of channels, the greater the

memory requirement for processing video frames, which increases the size of the node

and maximizes memory capacity.

3.2.1 Transmission of frame

As shown in Figure 2, it is necessary to serialize the data to transfer the frame to the Kafka

broker. The data coming from the channel has three channels in matrix form. In order to transmit

this, a matrix composed of three channels of RBG is converted into a byte array. When this

process is performed, the height and width information of the frame is lost as to how many

channels are formed by one frame. This information is needed to re-encode the image at the

application level, so once the channel is detected, it should be sent only once at the moment of

connection with the Kafka broker.

Figure 2. Conversion of frame to byte array

212 Computer Science & Information Technology (CS & IT)

3.2.2 Distribution of image channel

Channels coming in on multiple channels will go into different queues through topics provided by

Kafka's brokers. Figure 3 below shows how each channel is distributed across multiple topics.

Multiple applications on distributed resources process data according to the resource situation and

then take data by accessing the Kafka topic and bringing the message directly. As shown in the

figure, the message can be retrieved by accessing multiple topics from one node, and the message

stored in one topic can be distributed by allowing access by multiple nodes.

Figure 3. Distribution of each channel frame

4. EXPERIMENTAL RESULTS

We configured the Kafka broker with three physical nodes which has Intel® core™ CPU E6550

2.33 GHz processors and 4GB memory. Nodes at the application level have been run in a virtual

environment to make it easier to reshape the number of nodes. Each node in the application level

has a quad core virtual CPU and 8GB memory.

In the experiment, the image is processed 60 seconds after the channel is generated. The

following accumulate means the total number of frames generated. And consume is the number

of frames taken from the Kafka broker. Finally, lag means the number of frames remaining in the

buffer without being processed. As shown in Figures 4, 5, and 6 below, the lag drops sharply as

the number of processing nodes increases. As the number of nodes increases, the difference

between the number of frames accumulated in the buffer and the number of processed frames

decreases.

Computer Science & Information Technology (CS & IT) 213

Figure 4. The result of one topic and one node

Figure 5. The result of two topics and two nodes

Figure 6. The results of four topics and four nodes

214 Computer Science & Information Technology (CS & IT)

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new large-scale image processing system with Kafka. Existing

systems use GPGPU on a single node to process images for high performance in real-time

environments. However, this method is not suitable for large-scale image processing. For large-

scale image processing, memory capacity must be available to accommodate large-scale images.

Although the GPU is well suited for high-speed processing of images, it still has limited memory

capacity. We suggested new large-scale image processing model that use a Kafka to create a

distributed environment. It allows overcoming the memory capacity that cannot be

accommodated by one node. In particular, since image data can be stored in the file system, it is

advantageous to handle large-scale images without data loss. In this paper, we have not been able

to perform experiments that use GPUs on a single node to achieve even greater performance.

Future research will focus on how to use GPUs or Xeon-phi for each node to achieve higher

performance in large-scale image processing.

ACKNOWLEDGMENTS

This work was supported by the Brain Korea 21 Plus Project in 2016 and Institute for Information

& communications Technology. Promotion (IITP) grant funded by the Korea government (MSIP)

(No. R0190-16-2012, High Performance Big Data Analytics Platform Performance Acceleration

Technologies Development).

REFERENCES

[1] Sweeney, Chris, et al. "HIPI: a Hadoop image processing interface for image-based mapreduce tasks."

Chris. University of Virginia (2011).

[2] Shvachko, Konstantin, et al. "The hadoop distributed file system." 2010 IEEE 26th symposium on

mass storage systems and technologies (MSST). IEEE, 2010.

[3] Gregg, Chris, and Kim Hazelwood. "Where is the data? Why you cannot debate CPU vs. GPU

performance without the answer." Performance Analysis of Systems and Software (ISPASS), 2011

IEEE International Symposium on. IEEE, 2011.

[4] Xu, Zhiwei, and Kai Hwang. "Modeling communication overhead: MPI and MPL performance on the

IBM SP2." IEEE Parallel & Distributed Technology: Systems & Applications 4.1 (1996): 9-24.

[5] Hunt, Patrick, et al. "ZooKeeper: Wait-free Coordination for Internet-scale Systems." USENIX

Annual Technical Conference. Vol. 8. 2010

[6] Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log

processing." Proceedings of the NetDB. 2011.

[7] Snyder, Bruce, Dejan Bosnganac, and Rob Davies. ActiveMQ in action. Vol. 47. Manning, 2011.

[8] Rostanski, Maciej, Krzysztof Grochla, and Aleksander Seman. "Evaluation of highly available and

fault-tolerant middleware clustered architectures using RabbitMQ." Computer Science and

Information Systems (FedCSIS), 2014 Federated Conference on. IEEE, 2014.

[9] Hintjens, Pieter. ZeroMQ: Messaging for Many Applications. " O'Reilly Media, Inc.", 2013.

Computer Science & Information Technology (CS & IT) 215

[10] Jacobs, Adam. "The pathologies of big data." Communications of the ACM52.8 (2009): 36-44.

AUTHORS

Yoon-Ki Kim is currently working toward the ph.D degree in Electronic and Computer

Engineering at the Korea University. His research interests include real-time distributed

and parallel data processing, IoT, Sensor processing and computer vision.

Chang-Sung Jeong is a professor at the department of EE/CE at Korea University. He

received his MS.(1985) and Ph.D.(1987) from Northwestern University, and B.S.(1981)

from Seoul National University. Before joining Korea University, he was a professor at

POSTECH during 1982-1992. He also worked as an associate researcher at UCSC during

1998-1999.

