
A Screen-captured Image Dataset for Widget

Classification on CNN

SungChul Byun1, Seong-Soo Han2, Chang-Sung Jeong1,
1 Department of Electrical Engineering, Korea University, Seoul, Republic of Korea

2 Department of Division of Liberal Studies, Kangwon National University, Samcheok,

Republic of Korea

 {sungcb}@korea.ac.kr, {sshan1}@kangwon.ac.kr, {csjeong}@korea.ac.kr

Abstract. The application and UI of mobile smart devices are constantly

diversifying. We use deep learning to classify widgets in screen images to

promote convenience. To this end, we leverage capture images and ReDraw

dataset to write deep learning datasets for image classification purposes. We

validate datasets using ResNet50 and EfficientNet, and our experiments show

that the dataset we write is useful for classification according to the widget's

functionality. We built Widg-C dataset—a deep learning dataset for identifying

the widget of smart devices—and validated them with representative CNN

models.

Keywords: CNN, Image Classification, Widget, Captured Image, Dataset

1 Introduction

Mobile smart devices offer various applications to users, and due to this convenience,

users of mobile smart devices are increasing worldwide. As the number of

smartphone users has increased and the smartphone market has become more active,

the development of applications and User Interface (UI) to use them is also rapidly

growing. Android Operating System (OS) and iOS are introducing new applications

from many developers to users, focusing on Google Play and Appstore, respectively.

However, the more applications are diversified, the more diverse the platform and

widget forms are. It means that it can confuse users, and the test environment for

smartphone production is also diversified.

We aim to implement convenience by using deep learning to identify such diverse

and complex widgets. We conduct this study intending to write a dataset to classify

widget according to its role in screen captured images.

2 Related Works

In this section, we introduce the dataset background that is utilized for the

classification of widgets. We also introduce concepts related to the Convolutional

Neural Network (CNN) used to implement them.

mailto:%7bsungcb%7d@korea.ac.kr
mailto:%7bsshan1%7d@kangwon.ac.kr
mailto:%7bcsjeong%7d@korea.ac.kr

2.1 CNN

CNN utilizes the computation of neural networks and is applied in various computer

vision and deep learning fields. To date, the image classification performance of

CNNs is so superior that it is more accurate than that of humans. We use ResNet50

[1] (ResNet with 50 Layers) and EfficientNet [2] as representative CNNs to classify

images of screen-capture and cropped widget in this work.

2.2 ReDraw Dataset

ReDraw dataset [3], written by Kevin Moran et al., is a deep learning dataset for

classifying Graphical User Interface (GUI) for smart mobile devices. ReDraw dataset

consists of Synthetic images created by Mock-up the actual widget and Organic

images collected in an automated manner from the top 250 Android apps popular in

each category of Google Play. Kevin Moran et al. cropped these collected screen

images and classified them according to the GUI functionality. ReDraw dataset was

also done with augmentation to address data imbalances and image crops to improve

data diversification. The dataset is divided into 16 classes of items: Button, CheckBox,

CheckedTextView, EditText, ImageButton, ImageView, NumberPicker,

ProgressBarHorizontal, ProgressBarVertical, RadioButton, RatingBar, SeekBar,

Spinner, Switch, TextView, and ToggleButton. It is also the same designation that is

used according to the role of the widget. The Organic image consisted of 143,170

images, 29,040, and 19,090 images, respectively, Training, Validation, and Test

dataset.

We will utilize the 16 classifications used in ReDraw equally. We determined that

these 16 classifications were appropriate to classify its functions only with the

appearance shown as an image. However, the ReDraw dataset has problems with

misclassifying and image redundancy. And there are images where the image crop

severely damages the feature. These problems can interfere with the convergence of

Deep Learning models and cause errors. Furthermore, due to the GUI image's

characteristic, the image crop can confuse the model's learning and makes the GUI

feature unrecognizable.

3 Dataset Description

In this section, we introduce Widg-C dataset—a deep learning image dataset for

widget classification. We will also introduce the way we wrote the dataset and its

composition.

Full screen-captured image collection and cropping widgets. We guess, output,

and capture a highly accessible screen that is frequently visible to users. The captured

images were manually saved bounding box information using BoundingBoxerImg

tool [4] and subsequently modified with an algorithm. The bounding box region was

classified into seven classes–text, image, edit, navi, status, button, region–that we

arbitrarily specified at first. We then crop the images as the coordination of the

bounding box from the full screen-captured image. Then, we classify the cropped

image into 16 widget classifications equal to ReDraw. Fig. 1 shows full screen-

captured images with bounding boxes and images cropped from the screen image then

reclassified to 16 widgets.

Fig. 1. Examples of full screen-captured image with bounding box and cropped widget images

Dataset for Widget Classification: Widg-C dataset. We deleted images to address

redundancy and data imbalances of the same images—this reduced dataset to about

half the ReDraw dataset size. As a result, the training dataset consists of 74,771

images; added 14373 images we have captured and cropped to the modified ReDraw

dataset of 60,398 images. The validation dataset consists of 22,297 images; used

18,697 images of ReDraw's training and validation datasets and adding 3,600 images

that we captured and cropped. Table 1 represents the configuration of Widg-C dataset.

Table 1. Configuration of Widg-C dataset

classes Training data Validation data

Button 6,533 1,977

CheckBox 5,252 1,338

CheckedTextView 6,577 1,661

EditText 444 158

ImageButton 6,881 2,591

ImageView 3,785 1,265

NumberPicker 4,720 1,180

ProgressBarHorizontal 3,028 759

ProgressBarVertical 2,476 625

RadioButton 3,960 1,089

RatingBar 3,990 999

SeekBar 4,351 1,092

Spinner 3,459 924

Switch 4,748 1,250

TextView 10,367 4,291

ToggleButton 4,200 1,078

Total 74771 22297

4 Experiment

We compare with ReDraw dataset using ResNet50 to validate our written dataset and

implement classification accuracy using EfficientNet.

We implement CNN by leveraging Keras embedded in Tensorflow 2.3.1 Library

and Tensorflow in Python 3.8.5 version for experiments. CNN models for

experiments were all optimized using RMSprop introduced in Geoff Hinton's Lecture

[5].

4.1 Comparison between ReDraw Dataset and Widg-C dataset

We trained ResNet50 on two datasets for 30 epochs and compared the changes in loss

and accuracy. The dataset's size can affect loss and accuracy changes; we extracted

the ReDraw dataset and constructed training and validation images in the number

74,771, 22,297 same as Dataset for Widget Classification.

The results of comparing the training accuracy, loss, validation accuracy, and loss of

the two datasets are shown in Fig. 2.

Fig. 2. The loss and accuracy in the training and validation process of ResNet50 for ReDraw

and Widg-C dataset.

The training and validation accuracy graphs show that Widg-C dataset is always

higher for 1 to 30 epochs than ReDraw dataset, and training and validation loss graphs

are always lower and more stable. It shows that the Widg-C dataset is better refined

and better classified by feature to classify widget than the ReDraw dataset.

4.2 Accuracy of CNNs trained with Widg-C dataset

We write 2,754 images of the test dataset, identical to the method we collected Widg-

C dataset, to verify the classification performance on real-world screen captured

images. This test data set is prepared by selecting images that are likely to be easily

accessible to users, and the configuration is shown in Table 2.

Table 2. Configuration of Test dataset

Classes Test data

Button 261

CheckBox 89

CheckedTextView 123

EditText 156

ImageButton 629

ImageView 283

NumberPicker 88

ProgressBarHorizontal 69

ProgressBarVertical 48

RadioButton 47

RatingBar 16

SeekBar 54

Spinner 42

Switch 45

TextView 759

ToggleButton 45

Total 2,754

We trained EfficientNet B0, B3 models for 30 epochs using Widg-C dataset with

the same training method with ResNet50. The test results of validating the

performance of ResNet and EfficientNet are as shown in Table 3.

Table 3. Accuracy of 3 CNN Models trained with Widg-C dataset.

Model accuracy macro average

ResNet50 95% 96%

EfficientNetB0 97% 98%

EfficientNetB3 98% 99%

As shown in Table 3, all three models performed high accuracy of more than 95%

for representative widget images in 2,754. CNN models using Widg-C dataset were

able to perform well in the classification of screen captured widget images.

5 Conclusion

The market for smart mobile devices and their applications is constantly changing and

diversifying. It often presents complex concerns for both users and creators of smart

mobile devices. We propose to solve these problems with Deep Learning using CNN.

After training several representative CNNs with our Widg-C dataset, the Widg-C

dataset is suitable for classifying widgets in screen-captured images.

However, Widg-C lacks the size of the dataset. For ReDraw's training dataset, it

was 143,170 images, while Widg-C is half the size, 74,771, which requires

supplementation of data to utilize as learning data for deep learning. Furthermore,

widget images are diverse in their shape and appearance, so it will be a more versatile

deep learning dataset only when supplemented with more varied kinds of images to

the dataset.

Cropped screen-captured images vary too much in image size to train CNN models.

It raises concerns about the failure of the feature detection while doing resize and

preprocesses. Due to these problems, we propose to adjust the input of the learning

model.

Henceforth, we will write collect screen image data to augment the data and write a

widget classifier of the completed screen image utilizing both region proposal and

image classification models. Through this, we want to make it possible to identify

areas that perform functions with the only screen captured images. It will make it

easier for users to access the parts of applications and the UI and make it easier for

producers or developers to simulate and test various functions.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. in Proc.

CVPR. pp. 770--778 (2016)

2. Tan, M., Le, Q.V.: Efficientnet: Rethinking Model Scaling for Convolutional Neural

Networks. arXiv preprint arXiv:1704.04861 (2017)

3. Moran, K., Bernal-Cardenas, C., Curcio, M., Bonnet, R. Poshyvanyk, D.: Machine

Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps. IEEE

Transactions on Software Engineering, vol. 46, No. 2 pp. 196--221. (2020)

4. BoundingBoxerImg, https://github.com/jms0923/BoundingBoxerImg

5. Hinton, G.: Lecture 6e: Neural Networks for Machine Learning,

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

https://github.com/jms0923/BoundingBoxerImg
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

