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Abstract. The application and UI of mobile smart devices are constantly 

diversifying. We use deep learning to classify widgets in screen images to 

promote convenience. To this end, we leverage capture images and ReDraw 

dataset to write deep learning datasets for image classification purposes. We 

validate datasets using ResNet50 and EfficientNet, and our experiments show 

that the dataset we write is useful for classification according to the widget's 

functionality. We built Widg-C dataset—a deep learning dataset for identifying 

the widget of smart devices—and validated them with representative CNN 

models. 
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1   Introduction 

Mobile smart devices offer various applications to users, and due to this convenience, 

users of mobile smart devices are increasing worldwide. As the number of 

smartphone users has increased and the smartphone market has become more active, 

the development of applications and User Interface (UI) to use them is also rapidly 

growing. Android Operating System (OS) and iOS are introducing new applications 

from many developers to users, focusing on Google Play and Appstore, respectively. 

However, the more applications are diversified, the more diverse the platform and 

widget forms are. It means that it can confuse users, and the test environment for 

smartphone production is also diversified. 

We aim to implement convenience by using deep learning to identify such diverse 

and complex widgets. We conduct this study intending to write a dataset to classify 

widget according to its role in screen captured images. 

2   Related Works 

In this section, we introduce the dataset background that is utilized for the 

classification of widgets. We also introduce concepts related to the Convolutional 

Neural Network (CNN) used to implement them. 
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2.1   CNN  

CNN utilizes the computation of neural networks and is applied in various computer 

vision and deep learning fields. To date, the image classification performance of 

CNNs is so superior that it is more accurate than that of humans. We use ResNet50 

[1] (ResNet with 50 Layers) and EfficientNet [2] as representative CNNs to classify 

images of screen-capture and cropped widget in this work.  

2.2   ReDraw Dataset 

ReDraw dataset [3], written by Kevin Moran et al., is a deep learning dataset for 

classifying Graphical User Interface (GUI) for smart mobile devices. ReDraw dataset 

consists of Synthetic images created by Mock-up the actual widget and Organic 

images collected in an automated manner from the top 250 Android apps popular in 

each category of Google Play. Kevin Moran et al. cropped these collected screen 

images and classified them according to the GUI functionality. ReDraw dataset was 

also done with augmentation to address data imbalances and image crops to improve 

data diversification. The dataset is divided into 16 classes of items: Button, CheckBox, 

CheckedTextView, EditText, ImageButton, ImageView, NumberPicker, 

ProgressBarHorizontal, ProgressBarVertical, RadioButton, RatingBar, SeekBar, 

Spinner, Switch, TextView, and ToggleButton. It is also the same designation that is 

used according to the role of the widget. The Organic image consisted of 143,170 

images, 29,040, and 19,090 images, respectively, Training, Validation, and Test 

dataset.  

We will utilize the 16 classifications used in ReDraw equally. We determined that 

these 16 classifications were appropriate to classify its functions only with the 

appearance shown as an image. However, the ReDraw dataset has problems with 

misclassifying and image redundancy. And there are images where the image crop 

severely damages the feature. These problems can interfere with the convergence of 

Deep Learning models and cause errors. Furthermore, due to the GUI image's 

characteristic, the image crop can confuse the model's learning and makes the GUI 

feature unrecognizable. 

3   Dataset Description 

In this section, we introduce Widg-C dataset—a deep learning image dataset for 

widget classification. We will also introduce the way we wrote the dataset and its 

composition. 



Full screen-captured image collection and cropping widgets. We guess, output, 

and capture a highly accessible screen that is frequently visible to users. The captured 

images were manually saved bounding box information using BoundingBoxerImg 

tool [4] and subsequently modified with an algorithm. The bounding box region was 

classified into seven classes–text, image, edit, navi, status, button, region–that we 

arbitrarily specified at first. We then crop the images as the coordination of the 

bounding box from the full screen-captured image. Then, we classify the cropped 

image into 16 widget classifications equal to ReDraw. Fig. 1 shows full screen-

captured images with bounding boxes and images cropped from the screen image then 

reclassified to 16 widgets. 

 

   

Fig. 1. Examples of full screen-captured image with bounding box and cropped widget images 

Dataset for Widget Classification: Widg-C dataset. We deleted images to address 

redundancy and data imbalances of the same images—this reduced dataset to about 

half the ReDraw dataset size. As a result, the training dataset consists of 74,771 

images; added 14373 images we have captured and cropped to the modified ReDraw 

dataset of 60,398 images. The validation dataset consists of 22,297 images; used 

18,697 images of ReDraw's training and validation datasets and adding 3,600 images 

that we captured and cropped. Table 1 represents the configuration of Widg-C dataset. 

Table 1.  Configuration of Widg-C dataset 

classes Training data Validation data 

Button 6,533 1,977 

CheckBox 5,252 1,338 

CheckedTextView 6,577 1,661 

EditText 444 158 



ImageButton 6,881 2,591 

ImageView 3,785 1,265 

NumberPicker 4,720 1,180 

ProgressBarHorizontal 3,028 759 

ProgressBarVertical 2,476 625 

RadioButton 3,960 1,089 

RatingBar 3,990 999 

SeekBar 4,351 1,092 

Spinner 3,459 924 

Switch 4,748 1,250 

TextView 10,367 4,291 

ToggleButton 4,200 1,078 

Total 74771 22297 

4   Experiment 

We compare with ReDraw dataset using ResNet50 to validate our written dataset and 

implement classification accuracy using EfficientNet. 

We implement CNN by leveraging Keras embedded in Tensorflow 2.3.1 Library 

and Tensorflow in Python 3.8.5 version for experiments. CNN models for 

experiments were all optimized using RMSprop introduced in Geoff Hinton's Lecture 

[5]. 

4.1   Comparison between ReDraw Dataset and Widg-C dataset 

We trained ResNet50 on two datasets for 30 epochs and compared the changes in loss 

and accuracy. The dataset's size can affect loss and accuracy changes; we extracted 

the ReDraw dataset and constructed training and validation images in the number 

74,771, 22,297 same as Dataset for Widget Classification. 

The results of comparing the training accuracy, loss, validation accuracy, and loss of 

the two datasets are shown in Fig. 2. 

 



Fig. 2. The loss and accuracy in the training and validation process of ResNet50 for ReDraw 

and Widg-C dataset. 

The training and validation accuracy graphs show that Widg-C dataset is always 

higher for 1 to 30 epochs than ReDraw dataset, and training and validation loss graphs 

are always lower and more stable. It shows that the Widg-C dataset is better refined 

and better classified by feature to classify widget than the ReDraw dataset. 

4.2   Accuracy of CNNs trained with Widg-C dataset 

We write 2,754 images of the test dataset, identical to the method we collected Widg-

C dataset, to verify the classification performance on real-world screen captured 

images. This test data set is prepared by selecting images that are likely to be easily 

accessible to users, and the configuration is shown in Table 2. 

Table 2.  Configuration of Test dataset 

Classes Test data 

Button 261 

CheckBox 89 

CheckedTextView 123 

EditText 156 

ImageButton 629 

ImageView 283 

NumberPicker 88 

ProgressBarHorizontal 69 

ProgressBarVertical 48 

RadioButton 47 

RatingBar 16 

SeekBar 54 

Spinner 42 

Switch 45 

TextView 759 

ToggleButton 45 

Total 2,754 

 

We trained EfficientNet B0, B3 models for 30 epochs using Widg-C dataset with 

the same training method with ResNet50. The test results of validating the 

performance of ResNet and EfficientNet are as shown in Table 3. 

Table 3.  Accuracy of 3 CNN Models trained with Widg-C dataset. 

Model accuracy macro average 

ResNet50 95% 96% 

EfficientNetB0 97% 98% 

EfficientNetB3 98% 99% 

 

As shown in Table 3, all three models performed high accuracy of more than 95% 

for representative widget images in 2,754. CNN models using Widg-C dataset were 

able to perform well in the classification of screen captured widget images. 



5   Conclusion 

The market for smart mobile devices and their applications is constantly changing and 

diversifying. It often presents complex concerns for both users and creators of smart 

mobile devices. We propose to solve these problems with Deep Learning using CNN. 

After training several representative CNNs with our Widg-C dataset, the Widg-C 

dataset is suitable for classifying widgets in screen-captured images. 

However, Widg-C lacks the size of the dataset. For ReDraw's training dataset, it 

was 143,170 images, while Widg-C is half the size, 74,771, which requires 

supplementation of data to utilize as learning data for deep learning. Furthermore, 

widget images are diverse in their shape and appearance, so it will be a more versatile 

deep learning dataset only when supplemented with more varied kinds of images to 

the dataset.  

Cropped screen-captured images vary too much in image size to train CNN models. 

It raises concerns about the failure of the feature detection while doing resize and 

preprocesses. Due to these problems, we propose to adjust the input of the learning 

model. 

Henceforth, we will write collect screen image data to augment the data and write a 

widget classifier of the completed screen image utilizing both region proposal and 

image classification models. Through this, we want to make it possible to identify 

areas that perform functions with the only screen captured images. It will make it 

easier for users to access the parts of applications and the UI and make it easier for 

producers or developers to simulate and test various functions. 
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